국가별 사이트 바로가기

회원로그인

커플닷넷 게시물 내용보기

게시판 운영원칙불량회원 운영정책에 따라 문제 있는 글은 사전경고 없이 삭제될 수 있습니다.  [불량회원 신고]

펀글입니다...뒷북이면 용서하소서.....여성분들 필독??????
by 권일섭 (대한민국/남)  2003-10-24 09:23 공감(0) 반대(0)
<수학으로 알아보는 프로포즈>

여성은 언제까지 남자의 프로포즈를 튕길 수 있을지...
확률에 관한 짧은 지식으로 여성의 튕김의 끝은 어디인지 밝혀본다.

상황 설정은 이러하다.

한 여성에게 100명의 남자가 순차적으로 프로포즈 한다고 하자.
100명 중 백마탄 왕자는 한명 뿐이고, 여성는 그 남자를 찾고 싶어한다.

물론 그가 첫번째로 프로포즈할지 100번째로 프로포즈를
해 올지는 알 수 없을 것이다.
여자가 100명의 남자 중 제일 멋진 남자를 고른다는 건
너무 불공평하니까 한번 프로포즈한 남자를 튕기면
다시는 그 남자는 선택할 수 없다고 하자.

즉 만약 더 나은 남자가 있을 거라는 기대감에
99명의 남자를 차례로 튕겨버렸다면
100번째 프로포즈하는 남자와 결혼하는 수 밖에 없다.
물론 첫번째 남자의 프로포즈를 받아드리면 99명의 남자가
어떤 남자인지 보지도 못한다.
그러면 여자에게는 전략이 필요하다.

<몇명까지는 일단 튕겨보고 그 다음부터 만나는 남자 중
제일 멋진 남자와 결혼하자.>

여자에게 몇명까지 튕겨보는게 가장 합리적인 전략이 될까?
조건부 확률을 생각해 볼 수 있다.

(풀이 과정) 조건부 확률을 생각해 볼 수 있다.
B : 여자가 백마탄 왕자를 정확하게 선택할 확률.
A1 : 백마탄 왕자가 첫번째로 프로포즈해올 확률.
A2 : 백마탄 왕자가 두번째로 프로포즈해올 확률.
.
.
.
A100 : 백마탄 왕자가 백번째로 프로포즈해올 확률.


그러면 여자가 백마탄 왕자를 정확하게 선택할 확률은 다음과 같이 표현된다.
P(B) = P(A1)*P(B/A1) + P(A2)*P(B/A2) + ... +P(A100)P(B/A100) ----(1)

이제 우리의 여성이 r명까지는 일단 튕겨보고
그 다음부터 만나는 남자 중 제일 멋진 남자와 결혼하기로 했다고 하자.
그러면 P(B/A1)=0, P(B/A2)=0, ..... , P(B/Ar)=0 이다.

(당연히 최초 r명 안에 백마탄 왕자가 있었다면, r명까지는 튕기기로 한 여자의 작전은 완전 실패다.)

P(B/A(r+1))=1=r/r
(당연히 r+1번째로 백마탄 왕자가 프로포즈 해 왔다면
r명까지 튕긴 여자는 이전에 본 r명보다 더 멋진 남자를
바로 만나버린 거니까 백마탄 왕자 픽업할 확률은 100%다.)

P(B/A(r+2))=r/(r+1)
P(B/A(r+3))=r/(r+2)
...


P(B/A(99))=r/99
P(B/A(100))=r/100

r+2번째에 백마탄 왕자가 있는데 r+1번째 프로포즈 한 남자가
이전에 튕긴 r명보다 나은 남자였다면, 여자는 최초세운 전략상
그냥 r+1번째 남자의 프로포즈를 받아들이게 되고 그러면
r+2번째 남자는 보지도 못하니까, 여자의 입장에서는 또 전략상 실패다. 따라서 r+2번째 남자(백마탄 왕자)의 프로포즈를 받기 위해서는
r+1번째 남자가 기존의 r명보다 나은 남자여서는 안될 것이다.
다시 말해 백마탄 왕자보다 앞서서 프로포즈 하는 남자중
가장 괜찮은 남자가 r번째이전(r번째 포함)에 여자에게
프로포즈를 하면 된다.
r+1번째에만 있지 않으면 된다.
1,2,3,...,r,r+1번째 중 r+1번째만 아니면 되니까 확률은 r/(r+1)이다.
같은 방식으로 백마탄 왕자가 r+3번째로 프로포즈를 한다면
r+1번째 r+2번째에 여자가 프로포즈를 받아들여버리면 안된다.
그러려면 백마탄 왕자 이전의 남자들 중 가장 멋진 남자가
r번재 이전(r번째 포함)에 있으면 된다.
그러면 r+1번째, r+2번째 남자가 r번째까지의 남자보다 멋질 수
없으므로 여성는 r+3번째 남자가 어떤 남자인지 살필 기회를 갖게 된다.

확률은 r/(r+2)

이런 식으로 동일한 풀이 과정을 거치면 백마탄 왕자가 백번째로
프로포즈 해올때 여자가 백번까지 기다려서 그 왕자를 선택할 확률은
r/100 이 결과를 (1)식에 대입하면

100 1 r
sigma --- * ---
x=r 100 x

이것이다! 드디어 r에 관한 함수가 나왔다.

항수가 많으니까 그냥 연속적으로 생각해서 적분을 하자.

1 r
integral r->100 --- * --- dx
100 x

r 100
= --- [lnx]
100 r

어차피 우리는 위의 값을 최대로 만드는 r값을 찾는것이고,
상수항과 계수는 신경 안써도 되니까

d
--[ r{ln100} - r {ln r } ]= 0 을 만드는 r을 찾자.
dr

(답)
r = 37


답이 나왔다. 37명이다.
보통 한 여자에게 프로포즈하는 남자의 숫자가 10명이라고 하면
여자는 최초 3명까지는 튕겨볼 수 있어도 4명부터는 튕겨서는
안된다는 계산이 나온다.
그냥 괜찮다 싶으면 잡아야 된다는 것이다.
솔직히 10명도 많다.
보통 여성에게 프로포즈 하는 남자가 5명쯤 된다면
최초 한명 쯤은 공주병 환자처럼 튕겨볼 수 있으나
두번째 남자가 프로포즈해올 경우...
첫번째 남자보다 낫기만 하다면 프로포즈를 받아들여야 한다는 것이다.
그만 튕기고...

뭇 남성들이여~

만약 사귀자고 했는데도 그녀가 튕긴다면...
그 여자 눈앞에다 연습장 펼쳐놓고 인테그랄 한번 쌔려주자 ..


< 원작자를 알 수 없었습니다. >

커플닷넷 게시물 댓글보기

커플닷넷 게시물 댓글쓰기

작성자 닉네임 ★ 댓글을 작성하시려면 로그인해 주세요.
▶ 댓글은 500자(1000Byte)이하로 작성가능합니다. 0 Bytes   등록